
CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
40

Machine Printed Character Recognition
System Using Feature Point Extraction and

Neural Network Classifier

Shanir Camacho Jara*, Li Hong
shanir2007@hotmail.com, lihongcsu@mail.edu.pe

Abstract

Optical Character Recognition has become the aim of many research studies in
the last decades, and that is just because its great influence in many industries
such as banking, shipping, commerce, communications, marketing, license
plate recognition, etc. Due to the great importance and promising future of
this field, the purpose of this work is to introduce a system that, using feature
character extraction and neural network classifier trained with the Back-propa-
gation algorithm, is able to recognize machine printed English characters.

1. Introduction

The optical character recognition has its beginning around 1929 with
the work done by Gustav Tauschek. It is usually abbreviated to OCR, is
the mechanical or electronic translation of images, into machine-editable
text. OCR is a field of research in pattern recognition [TVETER, 1998],
artificial intelligence and machine vision [KURZWEIL, 1990]. Though,
academic research in the field continues, the focus on OCR has shifted to
implementation of proven techniques.

In this paper we include the whole framework to develop an OCR
system using two methods for feature point extraction; the neural network
development and the adjustments to get optimum results; and finally we
perform further neural network analysis on sample data and compare the
obtained results from the two proposed methods. In the last section we
discuss the conclusions and future work.

1.1 Applications of OCRs

The main business and industrial applications of character and document
recognition in the last forty years have been in the automatic classification of
letters using handwritten postal, ZIP codes, automatic reading of administrative
formularies of fixed structure, car plate automatic detection, recognition of
text signs in traffic applications or automatic reading of amounts in bank.
By supporting these applications, recognition capability has expanded in
multiple dimensions: mode of writing, scripts, types of documents, and so on
[CHELLAPILLA, 2004].

School of Information
Science & Engineering,
Central South University,
Hunan 410083, China

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
41

1.2 Approaches to character recognition

Developing an OCR system is a complicated task and requires a lot
of effort. Since the field of OCR started, investigators have proposed
many different approaches like Artificial Neural Networks, Learning Vector
Quantizing, Bayesian Techniques, Hidden Markov Models, and a variety of
filtering techniques (such as Wavelets) just to cite a few.

However, the approaches that have had more acceptance for their
effectiveness and efficiency is the use of artificial neural networks, because
this technique can dramatically simplify the code and improve quality of
recognition while achieving good performance [ANDERSON, 1995]
[DAVALO, 1991]. Another benefit of using neural network in OCR is
extensibility of the system – ability to recognize more character sets than
initially defined. Therefore, the Artificial Neural Network (ANN) is a
wonderful tool that can help to resolve such kind of problems [CYBENKO,
1989] [FUNAHASHI, 1989]. Therefore, after much research in this field
we have decided to use ANN to implement the system, choosing the back-
propagation algorithm to accomplish this task.

2. Our Approach

We have used the feature point recognition approach combined with a neural
network classifier. Therefore, before starting to explain the system in detail, we
need to introduce the main framework used to build the present system.

2.1 Feature Point Extraction

 Feature point extraction, is a very important process in pattern recognition
because the recognition performance of the system is highly related to the
quality of the feature extraction. In literature, many definitions for a feature
point have been proposed [SCHMIDT, 1997]; we can simply define
features like a set of selected measurements extracted from the input pattern.
The features are supposed to be invariant or less sensitive with respect to
the commonly encountered variations and distortions, and also containing
fewer redundancies. In many cases, the decision of what to measure or
what features need to be extracted is based on human designers, and also
dependent on the practical situations such as the availability of measurements
and the cost of measurements. This system recognizes patterns using two
methods to extract the features:

•	 Discrete Features
•	 Zoning

2.1.1. Discrete Features

For each character, the following features may be extracted [RAMESH,
1989] [KUNDU, 1989]. These kind of systems scan each pattern-image
to find: the number of vertical and horizontal lines; number of T-joints; the

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
42

number of X-joints; the number of bend points; presence of an isolated dot;
total number of end points, etc. People tend to be sensitive to these features,
for example the fact that the lines in a “Z” are connected in a certain way is
more important than the individual lengths of those lines. These relationships
are what should be used for discrete feature extraction.

2.1.2. Zoning

With this method the character image is divided into NxM zones. From
each zone, features are extracted to form the feature vector [TAKAHASHI,
1991]. In this case we computed the average gray level for each of the
zones. The goal of zoning is to obtain the local characteristics instead of
global characteristics.

2.2 Back-propagation neural network

The algorithm behind back-propagation networks was first described by
Paul Werbos in 1974 [WERBOS, 1974], but it wasn’t until 1986 through
the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
[RUMELHART, 1986], that it gained recognition, and it led to a “renaissance”
in the field of artificial neural network research.

A back-propagation network usually consists of three (or sometimes fewer)
layers of neurons: the input layer, the hidden layer(s), and the output layer.
We can see graphically the architecture in the figure 1:

Figure. 1 Back-propagation network architecture

This algorithm works by what is known as supervised training. The principle
of back propagation is actually quite easy to understand [CARLING, 1992].
The basic steps are:

1.	 Initialize the network with small random weights.

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
43

2.	 Present an input pattern to the input layer of the network.
3.	 Feed the input pattern forward through the network to calculate its

activation value.
4.	 Take the difference between desired output and the activation value

to calculate the network’s activation error.
5.	 Adjust the weights feeding the output neuron to reduce its activation

error for this input pattern.
6.	 Propagate an error value back to each hidden neuron that is

proportional to their contribution of the network’s activation error.
7.	 Adjust the weights feeding each hidden neuron to reduce their

contribution of error for this input pattern.
8.	 Repeat steps 2 to 7 for each input pattern in the input collection.
9.	 Repeat step 8 until the network is suitably trained.

The challenge is to find the best way to update the weights and thresholds
in each iteration (step 7) to minimize the error [MOHAMMED, 2005].

3. System Design

In this section we drill down into the main components and architecture of
the system and the neural network classifier.

3.1 Neural Network Architecture

The neural network architecture is based on the multilayer perceptron
using a sigmoidal output function. However, before we train the network, we
need to prepare the input patterns. In the figure 2 we show some processes
carried out by the system to get the input data. After we have the input data
ready, the system starts the training process.

Figure. 2 Input patterns

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
44

About the how to calculate the error:

Here, we have the variables:

•	 output_o = Activation value of the output neuron.

•	 error_o = Error at the output neuron

•	 error_h = Error at a hidden neuron

•	 weight_ho = A weight connecting a hidden neuron to the output
neuron

	

Figure. 3 Calculation of the error value

The error feed back to a hidden neuron is calculated by:

error_h = error_o * Derivative (output_o) * weight_ho

The calculation of the Derivative is explained in the later sections.

It is important to note that each pattern is presented in turn, and the
network slightly adjust it before moving on to the next pattern. If we simply let
the network perfectly correct the errors before moving onto the next pattern, it
would never learn a generalized solution for the entire input collection.

3.2	 Components of the system

The main components and their relationships are showed in the next figure:

Figure. 4 System components

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
45

As we can see, the patterns-images are the input to the system that will help
to train the neural network. Each one of the components will be explained in
detail in the following sections.

3.3	 Data structure model

We have found that many applications do not extract their entities, like
neurons, layers of neurons, or a network of layers, instead they implement the
entire neuron network architecture in a single class. In some cases, it is arguable
what is better, but in most cases, it is favorable to split all these entities into distinct
classes, what leads not only to easier understanding, but also allows reusing of
all these components and building new neural networks architectures from smaller
generic pieces. And, the present system follows this method, in this way it fulfills
the Object Oriented Model (OOP) [ROGERS, 1996].

Therefore, we have created several classes, among the most important
ones we can mention:

•	 Neuron: base class for all neurons, which encapsulates such common
entities like a neuron’s weight, output value, and input value.

•	 Layer: is a collection of neurons. This is a base class, which
encapsulates common functionality for all neuron’s layers.

•	 Network: represents a neural network, what is a collection of neuron’s
layers. It implements specific neural network architecture.

•	 Activation Function: are used in activation neurons (the type of neuron,
where the weighted sum of its inputs is calculated and then the value
is passed as input to the activation function, and the output value
becomes the output value of the neuron).

•	 Back Propagation Learning: This class contains all the implementation
of the back-propagation algorithm explained in the previous section.

Additionally, we can look at the relationship between classes in the next
figure:

Figure. 5 Class diagram of the system

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
46

4. Preprocessing

The preprocessing is the first step and is quite straightforward; once we
input the image into the system we perform binarization.

4.1 Binarization

Document image binarization (thresholding) refers to the conversion
of a gray-scale image into a binary image. There are two categories of
thresholding:

•	 Global, picks one threshold value for the entire document image
which is often based on an estimation of the background level from
the intensity histogram of the image.

•	 Adaptive (local), uses different values for each pixel according to the
local area information.

In this case, we have used Global thresholding (value = 128), which
means that the image function Z(x, y) now takes two values: Z(x,y)=0 for
printed pixels, and Z(x,y)=1 for background pixels, instead of the 256 gray
level values. In the figure 6 we present a screenshot of the system when we
input a grayscale image (size 17x20) and in the figure 7 what we get after
the preprocessing (12x12 pixel).

 	

	 Figure. 6 Gray scale image	 Figure. 7 Processed image

5. Feature extraction

The feature points selection problem implies the selection from the whole
set of available features of the subset, allowing the most discriminative power.
The choice of a good feature point subset is crucial in the classification
process and if the considered feature point set does not include all the
information needed to discriminate samples belonging to different classes,
the achievable performance may be unsatisfactory, regardless of the learning
algorithm effectiveness [GUYON, 2003]. In this work we have proposed
two feature point selection methods that will be in charge of extracting the
relevant features from the samples.

5.1 Discrete Features

This process first analyzes the input image searching for discrete feature
points (Table 1), we found more convenient to just loop through the entire

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
47

image of the character and examine each pixel in turn. Then, if the pixel is
black (0), we check its eight neighbors (Figure 8).

2 3 4
1 X 5
8 7 6

Figure. 8 X’s Neighbor pixels

From the table we can conclude that, since each neighbor can also only be
on (0) or off (255), there are 256 possible combinations of neighborhoods.
From these 256, we have found that, for our system, just 10 represent
significant feature points. In the next table we can look at them:

Table 1. Primitive Features Points

No Feature Point Examples

0 Isolated point (all neighbors are off, which
represents noise, then we obviate it)

.

1 Blank space (neighbors can be on or off)

2 Black point (one or more neighbors points are on)

. .
.

3 Horizontal line (two neighbors aligned
horizontally)

. - .

4 Vertical line (two neighbors aligned vertically)

.
|
.

5 End point (it has a single neighbor) . ~

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
48

6 Diagonal (two neighbors aligned diagonally)

.
 /
.

7 T-joint (three neighbors) . T .
.

8 Corner or bend point ^ .

.

9 Center (all the neighbors are on)
. . .
. * .
. . .

10 Cross

.
. + .

.

We can explain better this process with an example: In the figure 9
we have the image of the letter “H” after the pre-process (W=White and
B=Black). After we loop through this matrix labeling the discrete features
mentioned in Table 1, we get the new matrix of the figure 10:

Figure. 9 Binarized image of “H”

Figure. 10 Discrete feature points labeled

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
49

It’s clear that we can work with more discrete features, but according to
our experiment results these feature points make the system not to overload
with too many uninteresting points, besides it makes the feature point extractor
faster and reliable.

5.2 Zoning

The system takes the features based on the brightness map of the image.
To create this map we split the image into squares like is showed in the
figure, and then calculate the average value of each square.

Figure. 11 Zoning method

6. Generating Patterns

Basically, each training pattern consists of two single-dimensional arrays
of float numbers: Inputs and Outputs (target) arrays.

•	 Input: is an array which contains the input data. Namely, the feature
vector representations of each letter.

•	 Output: is the array of the pattern which represents an expected
result. There are as many elements in this array as many characters
the system is able to recognize. So, to recognize English letters from
“A” to “Z” we will need 26 elements in the Outputs array.

 In other words, being K the size of the extracted feature vector, for each
input vector P = {x1, x2 ...xK}, its target output is represented as the vector
{t1, t2 ... t26}. Here xi (1< i < K) represents the ith window measurement
and tj (1 < j < 26) is the target output for supervised learning, i.e. if t1 = 1
and all other tj are 0, then the input pattern is “A”. Similarly, if t2 = 1 and
all other tj are 0, then the input pattern represents a “B”. In this order, if the
target output tj =1 in position j, then it represents a printed character of the
order j in the sequence A...Z.

7. Adjusting Network for performance

In previous items we have explained how Back-propagation algorithm works,
but plain back-propagation is terribly slow and we want it to go faster. There are
some adjustments that can be set to speed up the learning phase:

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
50

7.1 Scaling data to improve performance

There is a widespread belief that the input to the network must be scaled
down to values between 0 and 1 if the activation function used is the
standard sigmoid and -1 to 1 for tanh. But in fact, the inputs can be any real
value; however the network may choke completely or learn very slowly if the
magnitudes of the inputs are too large.

Consequently, to make sure our network won’t “choke”, we have
implemented a process to scale down the values to the range [0…1]: In this
way we look for the maximum element value of the matrix and then divide
all the elements of the matrix by it.

Outputs are another story, for functions like the standard sigmoid with a
range of 0 to 1 or tanh which runs from -1 to 1, we can only get outputs
within this range, so we don’t need scaling here.

7.2 Sigmoid Function:

The sigmoid function can be defined by the expression:

And its derivative: f’(x) = 1 - f(x)2.

We can see it graphically:

 Figure. 12 Graph of the sigmoid function

But because we like the neurons to be working in the range of 0 to 1 we
have adjust the function slightly to:

And its derivative: f’(x) = f(x)(1 - f(x)). So we get,

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
51

 Figure. 13 Modified sigmoid function

This adjustment will bring us the benefit of being computationally less
demanding, which will be important for larger networks.

7.3 Amount of hidden layers

The number of neurons in the input layer depends on the number of
possible inputs we have, while the number of neurons in the output layer
depends on the number of desired outputs. The number of hidden layers and
how many neurons in each hidden layer cannot be well defined in advance,
but the size of the network plays a very important role. The right size for
the network should be large enough to be able to learn the differences
between the different classes and small enough to be unable to distinguish
the differences between the feature vectors of the same class.

To find the right size, we consider more suitable to increase gradually
the number of hidden layers since 0 until 3 hidden layers. In general, the
addition of a hidden layer could allow the network to learn more complex
patterns, but at the same time decreases its performance [HABRA, 2005].

Table 2. Tests to find the correct amount of hidden layers

Hidden Layers Train time # Iterations Error Misclassified
0 0:00:23 5441 0.999 0
1 0:00:14 2303 0.998 0
2 0:01:27 10000 25.410 26
3 0:01:46 10000 25.890 26

As we can see in Table 2, without any hidden layer the network is already
able to recognize (since misclassified = 0), but when we add one hidden
layer, the error and training time decreased favorably.

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
52

Amount of neurons in the hidden layer

After deciding the number of hidden layers, now we face the problem
of how many neurons should be used in the hidden layer to increase
performance. To solve it, first we define a function G(x),

G(x) = Z * # Characters in the output.

And to find out the best value for Z, we run some tests.

Table 3. Tests to find the correct amount of neurons in the hidden layer

Z (%) training time # iterations error
100% 0:00:14 2303 0.9980
75% 0:00:09 1667 0.9995
50% 0:00:06 1926 0.9983
30% 0:00:05 2161 0.9988
5% 0:00:05 2597 0.9985

It’s obvious that we can obtain good performance results if we set the
hidden layer neurons amount to the same value as the half of the amount in
the output (50% of amount of Characters).

After all these adjustments, we have the network set to get misclassified
value of “0/26”, which means that the trained network can successfully
recognize all patterns from the training set, with the best performance.

8. Experiments

Since the development and testing are done, we are ready to run some
experiments. Therefore, first we labeled 26 images representing each one
of the pattern to recognize, and run the learning process using the two
mentioned methods. After that, we selected a dataset of 140 non-regular
images (slanted and washed images) from all the 26 letters the English
vocabulary has. The results are:

Table 4. Results of the first experiment

Zoning (12 X 12) Discrete Features
Training time 1’ 26’’ 3’ 30’’

Iterations 11275 28267
Training error 0.0099996 0.0099998
Correct guess 119 110

Incorrect 21 30

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
53

Figure. 14 Recognition rate comparison

In both cases the average training error is about 0.009. And, we can
notice a difference in the training time: using the discrete features approach
the network takes longer to converge than using zoning. Another important
difference is the recognition rate, as is showed in the figure 14. With zoning
we get a recognition rate of 85.00%, however, with the discrete features we
get 78.57%, slightly lower.

A second experiment was carried out, this time to observe the behavior of
the network when we add blur and noise to the samples (separately):

First, we work with blurriness. This is done by using the Gaussian method to
contaminate our character recognition data. After that, we input the blur samples
to the system and run the recognition process. We can see the results in the Figure
15 and 16 for the Zoning and Discrete Features, respectively. In each run, we
change the blur amount, increasing the variable sigma from 0.5 to 3.

�
 Figure. 15 Zoning with Blur samples

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
54

Figure. 16 Discrete Features with Blur samples

As was expected, increasing the blur amount decreases the recognition
rate in both, the zoning and discrete features method. Although, with the
Zoning method we still get a higher recognition rate (Figure 17).

 Figure. 17 Zoning Vs Discrete Features

In the second part of this experiment, we want to know what result we get
if we add noise to the samples, so we applied the Salt & Pepper noise. In
each one of the four runs we increase the noise amount (figures 18 and 19),
which obviously lower the recognition rates.

Figure. 18 Zoning with noisy samples

	

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
55

Figure. 19 Discrete Features with noisy samples

As we can notice in the figure 20, with noise images also we get better
results using the zoning method.

Figure. 20 Zoning Vs Discrete Features

9. Conclusions

1.	 We have showed the differences between the two feature point
extraction techniques adopted in this paper for recognizing machine-
printed English characters combined with a neural network classifier,
and also a comparison of results obtained using both of them.

2.	 Experimental results showed us that the performance of our OCR
system described above is considerable high taking into account
the fact that we have tested on several non regular images (raw,
washed, blurry and noisy images) and that we have not used any
noise filtering techniques.

3.	 In our study, we obtained recognition rates as high as 85.00% with
the zoning and 78.57% using the discrete feature technique. The
recognition rates are high for most trials with both techniques.

CONGRESO

INTERNACIONAL DE

COMPUTACIÓN Y

TELECOMUNICACIONES

COMTEL 2009

UIGV
56

4.	 Also further analysis has been performed when the character data
is contaminated with noise and blur of varying amplitude. The
results showed that the degradation in performance is graceful and
predictable.

5.	 We have showed that even in neural networks OCR development we
found the Object Oriented Model well suitable.

10.	 References

1.	 [ANDERSON, 1995] ANDERSON J. (1995) An Introduction to Neural
Networks [M]. MIT Press. March 1995.

2.	 [KURZWEIL, 1990] KURZWEIL R. (1990) The age of intelligent machines
[M]. MIT Press. Cambridge. 1990

3.	 [DAVALO, 1991] DAVALO E. and NAIM P. (1991) Neural Networks
[M]. August 1991. 145p.

4.	 [TVETER, 1998] TVETER, (1998) R. The Pattern Recognition Basis of
Artificial Intelligence [M]. Wiley-IEEE Computer Society Press. March
1998.

5.	 [ROGERS, 1996] ROGERS J. (1996) Object-Orientated Neural
Networks in C++ [M]. 1st edition. October 1996.

6.	 [HABRA, 2005] HABRA Abdul. Neural Networks [EB/OL] [2005]
http://www.tek271.com/articles/neuralNet/IntoToNeuralNets.html.

7.	 [CYBENKO, 1989] CYBENKO, G. (1989) “Approximations by
superposition of a sigmoidal function” [J]. Math. Control Signals Systems.
vol. 2. 1989. pp. 303-314

8.	 [FUNAHASHI, 1989] FUNAHASHI, K. (1989). The approximate
realisation of continuous mappings by neural networks [J]. 1989.
p.183-192

9.	 [WERBOS, 1974] WERBOS, P.J., (1974) “Beyond Regression: New
Tools for Prediction and Analysis in the Behavioral Sciences” [D].
Harvard University. 1974.

10.	[RUMELHART, 1986] RUMELHART D.E., and MCCLELLAND J.L.,
(1986) Parallel distributed processing: explorations in the microstructure
of cognition, I & II [M], MIT Press, Cambridge, MA. 1986.

11.	[CHELLAPILLA, 2004] CHELLAPILLA K. and SIMARD P. (2004) “Using
Machine Learning to Break Visual Human Interaction Proofs (HIPs)
[J]” Advances in Neural Information Processing Systems 17, Neural
Information Processing Systems (NIPS’2004), MIT Press. 2004.

“ESTRATEGIAS DE

LAS TECNOLOGÍA DE

LA INFORMACIÓN Y

COMUNICACIÓN EN

EL CONTEXTO DE LA

CRISIS MUNDIAL”

UIGV
57

12.	[CARLING, 1992] CARLING A. (1992) Back propagation. Introducing
Neural Networks [M], 1992. p. 133-154.

13.	[MOHAMMED, 2005] MOHAMMED A. and WALID A. (2005)
Speeding Up Back-Propagation Neural Networks [C]. 2005 Informing
Science and IT Education Joint Conference. 2005.

14.	[GUYON, 2003] I. Guyon and A. Elisseeff. (2003). An introduction
to variable and feature selection. J. Mach. Learn. Res., 3:1157–1182,
2003.

15.	[SCHMIDT, 1997] C. SCHMIDT and R. MOHR, (1997) “Local gray
value invariants for image retrieval” IEEE transactions on pattern analysis
and machine intelligence, vol 19, May 1997.

16.	[TAKAHASHI, 1991] H. TAKAHASHI, (1991) “A neural net OCR using
geometrical and zonal pattern features” in Proceedings of the First
International Conference on Document Analysis and Recognition, (Saint-
Malo, France), p.821-828, 1991

17.	 [RAMESH, 1989] S.R.RAMESH (1989), “A generalized character
recognition algorithm: A graphical approach,” Pattern Recognition,
vol.22, no.4, pp.347-350, 1989.

18.	[KUNDU, 1989] A. KUNDU, Y. He, and P. BAHL (1989), “Recognition
of handwritten word: First and second order hidden Markov model
based approach,” Pattern Recognition, vol.22, no. 3, pp. 285-297,
1989.

