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Abstract

Optical Character Recognition has become the aim of many research studies in 
the last decades, and that is just because its great influence in many industries 
such as banking, shipping, commerce, communications, marketing, license 
plate recognition, etc. Due to the great importance and promising future of 
this field, the purpose of this work is to introduce a system that, using feature 
character extraction and neural network classifier trained with the Back-propa-
gation algorithm, is able to recognize machine printed English characters.

1. Introduction 

The optical character recognition has its beginning around 1929 with 
the work done by Gustav Tauschek. It is usually abbreviated to OCR, is 
the mechanical or electronic translation of images, into machine-editable 
text. OCR is a field of research in pattern recognition [TVETER, 1998], 
artificial intelligence and machine vision [KURZWEIL, 1990]. Though, 
academic research in the field continues, the focus on OCR has shifted to 
implementation of proven techniques. 

In this paper we include the whole framework to develop an OCR 
system using two methods for feature point extraction; the neural network 
development and the adjustments to get optimum results; and finally we 
perform further neural network analysis on sample data and compare the 
obtained results from the two proposed methods. In the last section we 
discuss the conclusions and future work. 

1.1 Applications of OCRs 

The main business and industrial applications of character and document 
recognition in the last forty years have been in the automatic classification of 
letters using handwritten postal, ZIP codes, automatic reading of administrative 
formularies of fixed structure, car plate automatic detection, recognition of 
text signs in traffic applications or automatic reading of amounts in bank. 
By supporting these applications, recognition capability has expanded in 
multiple dimensions: mode of writing, scripts, types of documents, and so on 
[CHELLAPILLA, 2004].
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1.2 Approaches to character recognition

Developing an OCR system is a complicated task and requires a lot 
of effort. Since the field of OCR started, investigators have proposed 
many different approaches like Artificial Neural Networks, Learning Vector 
Quantizing, Bayesian Techniques, Hidden Markov Models, and a variety of 
filtering techniques (such as Wavelets) just to cite a few.

However, the approaches that have had more acceptance for their 
effectiveness and efficiency is the use of artificial neural networks, because 
this technique can dramatically simplify the code and improve quality of 
recognition while achieving good performance [ANDERSON, 1995] 
[DAVALO, 1991]. Another benefit of using neural network in OCR is 
extensibility of the system – ability to recognize more character sets than 
initially defined. Therefore, the Artificial Neural Network (ANN) is a 
wonderful tool that can help to resolve such kind of problems [CYBENKO, 
1989] [FUNAHASHI, 1989]. Therefore, after much research in this field 
we have decided to use ANN to implement the system, choosing the back-
propagation algorithm to accomplish this task.

2. Our Approach

We have used the feature point recognition approach combined with a neural 
network classifier. Therefore, before starting to explain the system in detail, we 
need to introduce the main framework used to build the present system.

2.1 Feature Point Extraction 

 Feature point extraction, is a very important process in pattern recognition 
because the recognition performance of the system is highly related to the 
quality of the feature extraction. In literature, many definitions for a feature 
point have been proposed [SCHMIDT, 1997]; we can simply define 
features like a set of selected measurements extracted from the input pattern. 
The features are supposed to be invariant or less sensitive with respect to 
the commonly encountered variations and distortions, and also containing 
fewer redundancies. In many cases, the decision of what to measure or 
what features need to be extracted is based on human designers, and also 
dependent on the practical situations such as the availability of measurements 
and the cost of measurements. This system recognizes patterns using two 
methods to extract the features:

•	 Discrete Features
•	 Zoning

2.1.1. Discrete Features

For each character, the following features may be extracted [RAMESH, 
1989] [KUNDU, 1989]. These kind of systems scan each pattern-image 
to find: the number of vertical and horizontal lines; number of T-joints; the 
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number of X-joints; the number of bend points; presence of an isolated dot; 
total number of end points, etc. People tend to be sensitive to these features, 
for example the fact that the lines in a “Z” are connected in a certain way is 
more important than the individual lengths of those lines. These relationships 
are what should be used for discrete feature extraction. 

2.1.2. Zoning

With this method the character image is divided into NxM zones. From 
each zone, features are extracted to form the feature vector [TAKAHASHI, 
1991]. In this case we computed the average gray level for each of the 
zones. The goal of zoning is to obtain the local characteristics instead of 
global characteristics.

2.2 Back-propagation neural network 

The algorithm behind back-propagation networks was first described by 
Paul Werbos in 1974 [WERBOS, 1974], but it wasn’t until 1986 through 
the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams 
[RUMELHART, 1986], that it gained recognition, and it led to a “renaissance” 
in the field of artificial neural network research. 

A back-propagation network usually consists of three (or sometimes fewer) 
layers of neurons: the input layer, the hidden layer(s), and the output layer. 
We can see graphically the architecture in the figure 1:

Figure. 1 Back-propagation network architecture

This algorithm works by what is known as supervised training. The principle 
of back propagation is actually quite easy to understand [CARLING, 1992]. 
The basic steps are:

1.	 Initialize the network with small random weights.
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2.	 Present an input pattern to the input layer of the network.
3.	 Feed the input pattern forward through the network to calculate its 

activation value.
4.	 Take the difference between desired output and the activation value 

to calculate the network’s activation error.
5.	 Adjust the weights feeding the output neuron to reduce its activation 

error for this input pattern.
6.	 Propagate an error value back to each hidden neuron that is 

proportional to their contribution of the network’s activation error.
7.	 Adjust the weights feeding each hidden neuron to reduce their 

contribution of error for this input pattern.
8.	 Repeat steps 2 to 7 for each input pattern in the input collection.
9.	 Repeat step 8 until the network is suitably trained.

The challenge is to find the best way to update the weights and thresholds 
in each iteration (step 7) to minimize the error [MOHAMMED, 2005].

3. System Design

In this section we drill down into the main components and architecture of 
the system and the neural network classifier.

3.1 Neural Network Architecture

The neural network architecture is based on the multilayer perceptron 
using a sigmoidal output function. However, before we train the network, we 
need to prepare the input patterns. In the figure 2 we show some processes 
carried out by the system to get the input data. After we have the input data 
ready, the system starts the training process.

Figure. 2 Input patterns
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About the how to calculate the error:

Here, we have the variables:

•	 output_o = Activation value of the output neuron.

•	 error_o = Error at the output neuron

•	 error_h = Error at a hidden neuron

•	 weight_ho = A weight connecting a hidden neuron to the output 
neuron

	

Figure. 3 Calculation of the error value

The error feed back to a hidden neuron is calculated by: 

error_h = error_o * Derivative (output_o) * weight_ho

The calculation of the Derivative is explained in the later sections.

It is important to note that each pattern is presented in turn, and the 
network slightly adjust it before moving on to the next pattern. If we simply let 
the network perfectly correct the errors before moving onto the next pattern, it 
would never learn a generalized solution for the entire input collection.

3.2	 Components of the system 

The main components and their relationships are showed in the next figure:

Figure. 4 System components
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As we can see, the patterns-images are the input to the system that will help 
to train the neural network. Each one of the components will be explained in 
detail in the following sections.

3.3	 Data structure model

We have found that many applications do not extract their entities, like 
neurons, layers of neurons, or a network of layers, instead they implement the 
entire neuron network architecture in a single class. In some cases, it is arguable 
what is better, but in most cases, it is favorable to split all these entities into distinct 
classes, what leads not only to easier understanding, but also allows reusing of 
all these components and building new neural networks architectures from smaller 
generic pieces. And, the present system follows this method, in this way it fulfills 
the Object Oriented Model (OOP) [ROGERS, 1996]. 

Therefore, we have created several classes, among the most important 
ones we can mention:

•	 Neuron: base class for all neurons, which encapsulates such common 
entities like a neuron’s weight, output value, and input value. 

•	 Layer: is a collection of neurons. This is a base class, which 
encapsulates common functionality for all neuron’s layers. 

•	 Network: represents a neural network, what is a collection of neuron’s 
layers. It implements specific neural network architecture. 

•	 Activation Function: are used in activation neurons (the type of neuron, 
where the weighted sum of its inputs is calculated and then the value 
is passed as input to the activation function, and the output value 
becomes the output value of the neuron). 

•	 Back Propagation Learning: This class contains all the implementation 
of the back-propagation algorithm explained in the previous section.

Additionally, we can look at the relationship between classes in the next 
figure:

 

Figure. 5 Class diagram of the system
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4. Preprocessing 

The preprocessing is the first step and is quite straightforward; once we 
input the image into the system we perform binarization. 

4.1 Binarization

Document image binarization (thresholding) refers to the conversion 
of a gray-scale image into a binary image. There are two categories of 
thresholding:

•	 Global, picks one threshold value for the entire document image 
which is often based on an estimation of the background level from 
the intensity histogram of the image. 

•	 Adaptive (local), uses different values for each pixel according to the 
local area information.

In this case, we have used Global thresholding (value = 128), which 
means that the image function Z(x, y) now takes two values: Z(x,y)=0 for 
printed pixels, and Z(x,y)=1 for background pixels, instead of the 256 gray 
level values. In the figure 6 we present a screenshot of the system when we 
input a grayscale image (size 17x20) and in the figure 7 what we get after 
the preprocessing (12x12 pixel).

  	

	 Figure. 6 Gray scale image	  Figure. 7 Processed image

5. Feature extraction

The feature points selection problem implies the selection from the whole 
set of available features of the subset, allowing the most discriminative power. 
The choice of a good feature point subset is crucial in the classification 
process and if the considered feature point set does not include all the 
information needed to discriminate samples belonging to different classes, 
the achievable performance may be unsatisfactory, regardless of the learning 
algorithm effectiveness [GUYON, 2003]. In this work we have proposed 
two feature point selection methods that will be in charge of extracting the 
relevant features from the samples.

5.1 Discrete Features

This process first analyzes the input image searching for discrete feature 
points (Table 1), we found more convenient to just loop through the entire 
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image of the character and examine each pixel in turn. Then, if the pixel is 
black (0), we check its eight neighbors (Figure 8).

2 3 4
1 X 5
8 7 6

Figure. 8 X’s Neighbor pixels

From the table we can conclude that, since each neighbor can also only be 
on (0) or off (255), there are 256 possible combinations of neighborhoods. 
From these 256, we have found that, for our system, just 10 represent 
significant feature points. In the next table we can look at them:

Table 1. Primitive Features Points

No Feature Point Examples

0 Isolated point (all neighbors are off, which 
represents noise, then we obviate it)

.

1 Blank space (neighbors can be on or off)

2 Black point (one or more neighbors points are on)

. .
.

3 Horizontal line (two neighbors aligned 
horizontally)

. - .

4 Vertical line (two neighbors aligned vertically)

.
|
.

5 End point (it has a single neighbor) . ~



CONGRESO 

INTERNACIONAL DE 

COMPUTACIÓN Y 

TELECOMUNICACIONES 

COMTEL 2009

UIGV
48

6 Diagonal (two neighbors aligned diagonally)

.
 /
.

7 T-joint (three neighbors) . T .
.

8 Corner or bend point ^ .

.

9 Center (all the neighbors are on)
. . .
. * .
. . .

10 Cross

.
. + .

.

We can explain better this process with an example: In the figure 9 
we have the image of the letter “H” after the pre-process (W=White and 
B=Black). After we loop through this matrix labeling the discrete features 
mentioned in Table 1, we get the new matrix of the figure 10:

 
Figure. 9 Binarized image of “H”

  
Figure. 10 Discrete feature points labeled
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It’s clear that we can work with more discrete features, but according to 
our experiment results these feature points make the system not to overload 
with too many uninteresting points, besides it makes the feature point extractor 
faster and reliable.

5.2 Zoning

The system takes the features based on the brightness map of the image. 
To create this map we split the image into squares like is showed in the 
figure, and then calculate the average value of each square.

Figure. 11 Zoning method

6. Generating Patterns

Basically, each training pattern consists of two single-dimensional arrays 
of float numbers: Inputs and Outputs (target) arrays. 

•	 Input: is an array which contains the input data. Namely, the feature 
vector representations of each letter. 

•	 Output: is the array of the pattern which represents an expected 
result. There are as many elements in this array as many characters 
the system is able to recognize. So, to recognize English letters from 
“A” to “Z” we will need 26 elements in the Outputs array. 

 In other words, being K the size of the extracted feature vector, for each 
input vector P = {x1, x2 ...xK}, its target output is represented as the vector 
{t1, t2 ... t26}. Here xi (1< i < K) represents the ith window measurement 
and tj (1 < j < 26) is the target output for supervised learning, i.e. if t1 = 1 
and all other tj are 0, then the input pattern is “A”. Similarly, if t2 = 1 and 
all other tj are 0, then the input pattern represents a “B”. In this order, if the 
target output tj =1 in position j, then it represents a printed character of the 
order j in the sequence A...Z.

7. Adjusting Network for performance

In previous items we have explained how Back-propagation algorithm works, 
but plain back-propagation is terribly slow and we want it to go faster. There are 
some adjustments that can be set to speed up the learning phase:
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7.1 Scaling data to improve performance

There is a widespread belief that the input to the network must be scaled 
down to values between 0 and 1 if the activation function used is the 
standard sigmoid and -1 to 1 for tanh. But in fact, the inputs can be any real 
value; however the network may choke completely or learn very slowly if the 
magnitudes of the inputs are too large.

Consequently, to make sure our network won’t “choke”, we have 
implemented a process to scale down the values to the range [0…1]: In this 
way we look for the maximum element value of the matrix and then divide 
all the elements of the matrix by it.

Outputs are another story, for functions like the standard sigmoid with a 
range of 0 to 1 or tanh which runs from -1 to 1, we can only get outputs 
within this range, so we don’t need scaling here.

7.2 Sigmoid Function:

The sigmoid function can be defined by the expression:

  
And its derivative: f’(x) = 1 - f(x)2. 

We can see it graphically:

 Figure. 12 Graph of the sigmoid function

But because we like the neurons to be working in the range of 0 to 1 we 
have adjust the function slightly to: 

And its derivative: f’(x) = f(x)(1 - f(x)). So we get,
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 Figure. 13 Modified sigmoid function

This adjustment will bring us the benefit of being computationally less 
demanding, which will be important for larger networks.

7.3 Amount of hidden layers

The number of neurons in the input layer depends on the number of 
possible inputs we have, while the number of neurons in the output layer 
depends on the number of desired outputs. The number of hidden layers and 
how many neurons in each hidden layer cannot be well defined in advance, 
but the size of the network plays a very important role. The right size for 
the network should be large enough to be able to learn the differences 
between the different classes and small enough to be unable to distinguish 
the differences between the feature vectors of the same class.

To find the right size, we consider more suitable to increase gradually 
the number of hidden layers since 0 until 3 hidden layers. In general, the 
addition of a hidden layer could allow the network to learn more complex 
patterns, but at the same time decreases its performance [HABRA, 2005].

Table 2. Tests to find the correct amount of hidden layers

# Hidden Layers Train time # Iterations Error Misclassified
0 0:00:23 5441 0.999 0
1 0:00:14 2303 0.998 0
2 0:01:27 10000 25.410 26
3 0:01:46 10000 25.890 26

As we can see in Table 2, without any hidden layer the network is already 
able to recognize (since misclassified = 0), but when we add one hidden 
layer, the error and training time decreased favorably.
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Amount of neurons in the hidden layer

After deciding the number of hidden layers, now we face the problem 
of how many neurons should be used in the hidden layer to increase 
performance. To solve it, first we define a function G(x), 

G(x) = Z * # Characters in the output. 

And to find out the best value for Z, we run some tests.

Table 3. Tests to find the correct amount of neurons in the hidden layer

Z (%) training time # iterations error
100% 0:00:14 2303 0.9980
75% 0:00:09 1667 0.9995
50% 0:00:06 1926 0.9983
30% 0:00:05 2161 0.9988
5% 0:00:05 2597 0.9985

It’s obvious that we can obtain good performance results if we set the 
hidden layer neurons amount to the same value as the half of the amount in 
the output (50% of amount of Characters).

After all these adjustments, we have the network set to get misclassified 
value of “0/26”, which means that the trained network can successfully 
recognize all patterns from the training set, with the best performance.

8. Experiments

Since the development and testing are done, we are ready to run some 
experiments. Therefore, first we labeled 26 images representing each one 
of the pattern to recognize, and run the learning process using the two 
mentioned methods. After that, we selected a dataset of 140 non-regular 
images (slanted and washed images) from all the 26 letters the English 
vocabulary has. The results are:

Table 4. Results of the first experiment 

Zoning (12 X 12) Discrete Features
Training time 1’ 26’’ 3’ 30’’

Iterations 11275 28267
Training error 0.0099996 0.0099998
Correct guess 119 110

Incorrect 21 30
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Figure. 14 Recognition rate comparison

In both cases the average training error is about 0.009. And, we can 
notice a difference in the training time: using the discrete features approach 
the network takes longer to converge than using zoning. Another important 
difference is the recognition rate, as is showed in the figure 14. With zoning 
we get a recognition rate of 85.00%, however, with the discrete features we 
get 78.57%, slightly lower. 

A second experiment was carried out, this time to observe the behavior of 
the network when we add blur and noise to the samples (separately):

First, we work with blurriness. This is done by using the Gaussian method to 
contaminate our character recognition data. After that, we input the blur samples 
to the system and run the recognition process. We can see the results in the Figure 
15 and 16 for the Zoning and Discrete Features, respectively. In each run, we 
change the blur amount, increasing the variable sigma from 0.5 to 3.

�
 Figure. 15 Zoning with Blur samples 
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Figure. 16 Discrete Features with Blur samples

As was expected, increasing the blur amount decreases the recognition 
rate in both, the zoning and discrete features method. Although, with the 
Zoning method we still get a higher recognition rate (Figure 17).

 Figure. 17 Zoning Vs Discrete Features

In the second part of this experiment, we want to know what result we get 
if we add noise to the samples, so we applied the Salt & Pepper noise. In 
each one of the four runs we increase the noise amount (figures 18 and 19), 
which obviously lower the recognition rates. 

Figure. 18 Zoning with noisy samples
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Figure. 19 Discrete Features with noisy samples

As we can notice in the figure 20, with noise images also we get better 
results using the zoning method.

Figure. 20 Zoning Vs Discrete Features

9. Conclusions

1.	 We have showed the differences between the two feature point 
extraction techniques adopted in this paper for recognizing machine-
printed English characters combined with a neural network classifier, 
and also a comparison of results obtained using both of them.

2.	 Experimental results showed us that the performance of our OCR 
system described above is considerable high taking into account 
the fact that we have tested on several non regular images (raw, 
washed, blurry and noisy images) and that we have not used any 
noise filtering techniques.

3.	 In our study, we obtained recognition rates as high as 85.00% with 
the zoning and 78.57% using the discrete feature technique. The 
recognition rates are high for most trials with both techniques.
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4.	 Also further analysis has been performed when the character data 
is contaminated with noise and blur of varying amplitude. The 
results showed that the degradation in performance is graceful and 
predictable.

5.	 We have showed that even in neural networks OCR development we 
found the Object Oriented Model well suitable.

10.	 References

1.	 [ANDERSON, 1995] ANDERSON J. (1995) An Introduction to Neural 
Networks [M]. MIT Press. March 1995.

2.	 [KURZWEIL, 1990] KURZWEIL R. (1990) The age of intelligent machines 
[M]. MIT Press. Cambridge. 1990

3.	 [DAVALO, 1991] DAVALO E. and NAIM P. (1991) Neural Networks 
[M]. August 1991. 145p.

4.	 [TVETER, 1998] TVETER, (1998) R. The Pattern Recognition Basis of 
Artificial Intelligence [M]. Wiley-IEEE Computer Society Press. March 
1998.

5.	 [ROGERS, 1996] ROGERS J. (1996) Object-Orientated Neural 
Networks in C++ [M]. 1st edition. October 1996.

6.	 [HABRA, 2005] HABRA Abdul. Neural Networks [EB/OL] [2005] 
http://www.tek271.com/articles/neuralNet/IntoToNeuralNets.html.

7.	 [CYBENKO, 1989] CYBENKO, G. (1989) “Approximations by 
superposition of a sigmoidal function” [J]. Math. Control Signals Systems. 
vol. 2. 1989. pp. 303-314

8.	 [FUNAHASHI, 1989] FUNAHASHI, K. (1989). The approximate 
realisation of continuous mappings by neural networks [J]. 1989. 
p.183-192

9.	 [WERBOS, 1974] WERBOS, P.J., (1974) “Beyond Regression: New 
Tools for Prediction and Analysis in the Behavioral Sciences” [D]. 
Harvard University. 1974.

10.	[RUMELHART, 1986] RUMELHART D.E., and MCCLELLAND J.L., 
(1986) Parallel distributed processing: explorations in the microstructure 
of cognition, I & II [M], MIT Press, Cambridge, MA. 1986.

11.	[CHELLAPILLA, 2004] CHELLAPILLA K. and SIMARD P. (2004) “Using 
Machine Learning to Break Visual Human Interaction Proofs (HIPs) 
[J]” Advances in Neural Information Processing Systems 17, Neural 
Information Processing Systems (NIPS’2004), MIT Press. 2004.



“ESTRATEGIAS DE 

LAS TECNOLOGÍA DE 

LA INFORMACIÓN Y 

COMUNICACIÓN EN 

EL CONTEXTO DE LA 

CRISIS MUNDIAL”

UIGV
57

12.	[CARLING, 1992] CARLING A. (1992) Back propagation. Introducing 
Neural Networks [M], 1992. p. 133-154.

13.	[MOHAMMED, 2005] MOHAMMED A. and WALID A. (2005) 
Speeding Up Back-Propagation Neural Networks [C]. 2005 Informing 
Science and IT Education Joint Conference. 2005.

14.	[GUYON, 2003] I. Guyon and A. Elisseeff. (2003). An introduction 
to variable and feature selection. J. Mach. Learn. Res., 3:1157–1182, 
2003.

15.	[SCHMIDT, 1997] C. SCHMIDT and R. MOHR, (1997) “Local gray 
value invariants for image retrieval” IEEE transactions on pattern analysis 
and machine intelligence, vol 19, May 1997.

16.	[TAKAHASHI, 1991] H. TAKAHASHI, (1991) “A neural net OCR using 
geometrical and zonal pattern features” in Proceedings of the First 
International Conference on Document Analysis and Recognition, (Saint-
Malo, France), p.821-828, 1991

17.	 [RAMESH, 1989] S.R.RAMESH (1989), “A generalized character 
recognition algorithm: A graphical approach,” Pattern Recognition, 
vol.22, no.4, pp.347-350, 1989.

18.	[KUNDU, 1989] A. KUNDU, Y. He, and P. BAHL (1989), “Recognition 
of handwritten word: First and second order hidden Markov model 
based approach,” Pattern Recognition, vol.22, no. 3, pp. 285-297, 
1989.


